michael kicks a ball at an angle if 36* horizontal. its initial velocity is 46 m/s. Find the maximum height it can reach, total time, and horizontal displacement for this motion

Respuesta :

(a) At its maximum height, the ball's vertical velocity is 0. Recall that

[tex]{v_y}^2-{v_{0y}}^2=2a_y\Delta y[/tex]

Then at the maximum height [tex]\Delta y=y_{\mathrm{max}}[/tex], we have

[tex]-\left(\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\sin36^\circ\right)^2=2\left(-9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)y_{\mathrm{max}}[/tex]

[tex]\implies y_{\mathrm{max}}=37\,\mathrm m[/tex]

(b) The time the ball spends in the air is twice the time it takes for the ball to reach its maximum height. The ball's vertical velocity is

[tex]v_y=v_{0y}+a_yt[/tex]

and at its maximum height, [tex]v_y=0[/tex] so that

[tex]0=\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\sin36^\circ+\left(-9.8\,\dfrac{\mathrm m}{\mathrm s}\right)t[/tex]

[tex]\implies t=2.8\,\mathrm s[/tex]

which would mean the ball spends a total of about 5.6 seconds in the air.

(c) The ball's horizontal position in the air is given by

[tex]x=v_{0x}t[/tex]

so that after 5.6 seconds, it will have traversed a displacement of

[tex]x=\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\cos36^\circ(5.6\,\mathrm s)[/tex]

[tex]\implies x=180\,\mathrm m[/tex]