Wheen 56j of heat are added to 11g of liquid, its temperature rises from 10.4 degrees celsius to 12 degrees celsius. What is the heat capacity of the liquid

Respuesta :

[tex]c = 3.2 \; \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}[/tex]

  • Energy change [tex]Q = 56 \; \text{J}[/tex]
  • Mass being heated [tex]m = 11 \; \text{g}[/tex]
  • Temperature change [tex]\Delta T = 12 - 10.4 = 1.6\;^{\text{o}}\text{C}[/tex] which is the same as [tex]1.6 \;\text{K}[/tex].

Heat capacity measures the energy required to raise the temperature of a unit mass of a substance by a unit degree. Therefore

[tex]c = Q / (m \cdot \Delta T) = 56/(11 \times (12 - 10.4)) = 3.2 \; \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}[/tex]


Answer : The heat capacity of liquid will be, [tex]3.18J/g^oC[/tex]

Explanation :

Formula used :

[tex]Q=m\times c\times \Delta T\\\\Q=m\times c\times (T_2-T_1)[/tex]

where,

Q = heat absorb = 56 J

m = mass of liquid = 11 g

c = specific heat of liquid = ?

[tex]\Delta T[/tex] = change in temperature

[tex]T_1[/tex] = initial temperature = [tex]10.4^oC[/tex]

[tex]T_2[/tex] = final temperature = [tex]12^oC[/tex]

Now put all the given value in the above formula, we get:

[tex]56J=11g\times c\times (12-10.4)^oC[/tex]

[tex]c=3.18J/g^oC[/tex]

Therefore, the heat capacity of liquid will be, [tex]3.18J/g^oC[/tex]