Respuesta :
[tex]c = 3.2 \; \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}[/tex]
- Energy change [tex]Q = 56 \; \text{J}[/tex]
- Mass being heated [tex]m = 11 \; \text{g}[/tex]
- Temperature change [tex]\Delta T = 12 - 10.4 = 1.6\;^{\text{o}}\text{C}[/tex] which is the same as [tex]1.6 \;\text{K}[/tex].
Heat capacity measures the energy required to raise the temperature of a unit mass of a substance by a unit degree. Therefore
[tex]c = Q / (m \cdot \Delta T) = 56/(11 \times (12 - 10.4)) = 3.2 \; \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}[/tex]
Answer : The heat capacity of liquid will be, [tex]3.18J/g^oC[/tex]
Explanation :
Formula used :
[tex]Q=m\times c\times \Delta T\\\\Q=m\times c\times (T_2-T_1)[/tex]
where,
Q = heat absorb = 56 J
m = mass of liquid = 11 g
c = specific heat of liquid = ?
[tex]\Delta T[/tex] = change in temperature
[tex]T_1[/tex] = initial temperature = [tex]10.4^oC[/tex]
[tex]T_2[/tex] = final temperature = [tex]12^oC[/tex]
Now put all the given value in the above formula, we get:
[tex]56J=11g\times c\times (12-10.4)^oC[/tex]
[tex]c=3.18J/g^oC[/tex]
Therefore, the heat capacity of liquid will be, [tex]3.18J/g^oC[/tex]