Respuesta :
[tex]cos(\frac{\pi }{4}) = \frac{\sqrt{2}}{2}[/tex] per Unit Circle
[tex]sec(\frac{\pi }{4}) = \frac{1 }{cos(\frac{\pi }{4})} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{2}[/tex] = [tex]\sqrt{2}[/tex]
cosθ * secθ = 1
[tex]\frac{\sqrt{2} }{2}[/tex] * [tex]\sqrt{2}[/tex] = 1
1 = 1
Answer: A
Answer:
Option 1.
Step-by-step explanation:
It is given that
[tex]\theta=\dfrac{\pi}{4}[/tex]
We need to find the expression that shows [tex]\cos \theta\sec \theta=1[/tex].
We know that,
[tex]\cos \left( \dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}[/tex]
On rationalization, we get
[tex]\cos \left( \dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}[/tex]
[tex]\sec \left( \dfrac{\pi}{4}\right)=\sqrt{2}[/tex]
Now,
[tex]LHS=\cos \theta\sec \theta[/tex]
[tex]LHS=\left(\dfrac{\sqrt{2}}{2}\right)(\sqrt{2})[/tex]
Therefore, the correct option is 1.