Respuesta :

[tex]x^2+18=\\\\x^2-(-18)=\\\\(x-\sqrt{-18})(x+\sqrt{-18})=\\\\(x-3\sqrt2i)(x+3\sqrt2i)[/tex]

Answer:

The factors are [tex](x-3\sqrt2 i)(x+3\sqrt2 i)[/tex]

Step-by-step explanation:

Given : Expression [tex]x^2+18[/tex]

To find : Factor the expression over the complex numbers ?

Solution :

Expression [tex]x^2+18[/tex]

First we solve for x,

[tex]x^2+18=0[/tex]

[tex]x^2=-18[/tex]

Taking root both side,

[tex]x=\sqrt{-18}[/tex]

[tex]x=\pm 3\sqrt{2}i[/tex]

So, The factors are [tex](x-3\sqrt2 i)(x+3\sqrt2 i)[/tex]

RELAXING NOICE
Relax