Respuesta :
Answer:
The given equation is
log(x-3)·log(x)
---------------------- ≤ 0
log(x-4)
As [tex]\log1=0[/tex],
So, we can write the above equation as
log(x-3)·log(x) ≤ 0 ∧ log(x-4)≥0[ if 1/a≤0, then a≥0]
Now, either log(x-3)≤ 0 ∨ log(x) ≤ 0 ∨ log(x-4)≥0
Now replacing 0 by [tex]\log1[/tex].
The above equation becomes
log(x-3)≤[tex]\log1[/tex] ∧ log(x) ≤[tex]\log1[/tex] ∧ log(x-4)≥[tex]\log1[/tex]
Cancelling log from both sides of all the three equations
⇒ x-3≤1 ∧ x≤1 ∧ x-4≥1
⇒x≤4 ∧ x≤1 ∧ x≥5
[tex]\frac{\log(x-3)}{\log(x-4)}[/tex] [ if,[tex]x\leq4[/tex]this expression has no meaning, so for this expression to exist,[tex]x\geq 5[/tex] ]
Combining all the three solution , the result of the equation is
0≤ x≤1 for [tex]\log x \text {and } x> 4 for \frac{\log(x-3)}{\log(x-4)}[/tex]
Why i have written this because the whole expression should be less than zero, so when 0≤ x≤1 ,[tex]\log x[/tex] becomes negative and when x>4 the expression [tex]\frac{\log(x-3)}{\log(x-4)}[/tex] will be positive.
[tex]D:x-3>0 \wedge x>0 \wedge x-4>0 \wedge \log(x-4)\not=0\\D:x>3 \wedge x>0 \wedge x>4 \wedge x-4 \not=1\\D:x>4 \wedge x\not=5\\D:x\in(4,5)\cup(5,\infty)\\\\\dfrac{\log(x-3)\cdot \log x}{\log(x-4)}\leq0\\\\\log(x-3)\cdot \log x \cdot \log (x-4)\leq0\\\\x_0=4 \vee x_0=1 \vee x_0=5\\\\x\in(-\infty,1\rangle\cup\langle4,5\rangle\\\\\\x\in(-\infty,1\rangle\cup\langle4,5\rangle \wedge x\in(4,5)\cup(5,\infty)\\\\\boxed{\boxed{x\in(4,5)}}[/tex]
