I can't seem to solve this :

log(x-3)·log(x)
---------------------- ≤ 0
log(x-4)


I would love a good explanation of the resolution process

Respuesta :

Answer:

The given equation is

log(x-3)·log(x)


---------------------- ≤ 0


log(x-4)

As [tex]\log1=0[/tex],

So, we can write the above equation as

log(x-3)·log(x)  ≤ 0 ∧ log(x-4)≥0[ if 1/a≤0, then a≥0]

Now, either log(x-3)≤ 0  ∨ log(x)  ≤ 0  ∨   log(x-4)≥0

Now replacing 0 by [tex]\log1[/tex].

The above equation becomes

log(x-3)≤[tex]\log1[/tex]    ∧    log(x)  ≤[tex]\log1[/tex]   ∧  log(x-4)≥[tex]\log1[/tex]

Cancelling log from both sides of all the three equations

⇒ x-3≤1  ∧ x≤1 ∧  x-4≥1

x≤4  ∧   x≤1     ∧  x≥5

[tex]\frac{\log(x-3)}{\log(x-4)}[/tex] [ if,[tex]x\leq4[/tex]this expression has no meaning, so for this expression to exist,[tex]x\geq 5[/tex]  ] 

Combining all the three solution , the result of the equation is

  0≤ x≤1 for [tex]\log x \text {and } x> 4 for \frac{\log(x-3)}{\log(x-4)}[/tex]

Why i have written this because the whole expression should be less than zero, so when 0≤ x≤1 ,[tex]\log x[/tex] becomes negative and when x>4 the expression [tex]\frac{\log(x-3)}{\log(x-4)}[/tex] will be positive.



[tex]D:x-3>0 \wedge x>0 \wedge x-4>0 \wedge \log(x-4)\not=0\\D:x>3 \wedge x>0 \wedge x>4 \wedge x-4 \not=1\\D:x>4 \wedge x\not=5\\D:x\in(4,5)\cup(5,\infty)\\\\\dfrac{\log(x-3)\cdot \log x}{\log(x-4)}\leq0\\\\\log(x-3)\cdot \log x \cdot \log (x-4)\leq0\\\\x_0=4 \vee x_0=1 \vee x_0=5\\\\x\in(-\infty,1\rangle\cup\langle4,5\rangle\\\\\\x\in(-\infty,1\rangle\cup\langle4,5\rangle \wedge x\in(4,5)\cup(5,\infty)\\\\\boxed{\boxed{x\in(4,5)}}[/tex]

RELAXING NOICE
Relax