Respuesta :

Let us rewrite the two lines in slope intercept form to obtain,

[tex]3x-5y+3=0[/tex]

[tex]\Rightarrow -5y=-3x-3[/tex]

[tex]\Rightarrow y=\frac{3}{5}x+\frac{3}{5}[/tex]

For the second equation too, we have,


[tex]6x-10y-12=0[/tex]

[tex]\Rightarrow -10y=-6x+12[/tex]


[tex]\Rightarrow y=\frac{6}{10}x-\frac{12}{10}[/tex]

[tex]\Rightarrow y=\frac{3}{5}x-\frac{6}{5}[/tex]


The two slopes are equal. this means the two lines are parallel. We apply the formula for finding the distance between 2 parallel lines. This formula is given by

[tex]d=\frac{|b_2-b_1|}{\sqrt{m^2+1} }[/tex]

Where

[tex]b_1=\frac{3}{5}[/tex]

[tex]b_2=-\frac{6}{5}[/tex]

and

[tex]m=\frac{3}{5}[/tex]


We substitute into the formula to obtain,


[tex]d=\frac{|-\frac{6}{5}-\frac{3}{5}|}{\sqrt{(\frac{3}{5})^2 +1 } }[/tex]


[tex]d=\frac{|\frac{-6-3}{5}|}{\sqrt{\frac{9}{25} +1}}[/tex]


[tex]d=\frac{|\frac{-9}{5} |}{\sqrt{\frac{34}{25} } }[/tex]


[tex]d=\frac{9\sqrt{34} }{34}[/tex]

Therefore the distance between the two lines is approximately 1.5 units.

Ver imagen kudzordzifrancis
RELAXING NOICE
Relax