The probability that a randomly selected customer takes more than 10 minutes will be 8.38%
Explanation
The average or mean[tex](\mu)[/tex] is 8.56 minutes and standard deviation[tex](\sigma)[/tex] is 1.04 minutes.
Formula for finding the z-score is: [tex]z= \frac{X-\mu}{\sigma}[/tex]
So, the z-score for [tex]X=[/tex] 10 minutes will be.....
[tex]z(X=10)=\frac{10-8.56}{1.04}=\frac{1.44}{1.04}=1.3846... \approx 1.38[/tex]
Now, according to the standard normal distribution table, [tex]P(z<1.38)=0.9162[/tex] . So.....
[tex]P(X>10)=P(z>1.38)= 1-P(z<1.38)=1-0.9162= 0.0838= 8.38\%[/tex]
So, the probability that a randomly selected customer takes more than 10 minutes will be 8.38%