Respuesta :
We have been given that
[tex]f(x) = 6x^{2} +72[/tex]
[tex]f(x)-72=6x^{2}[/tex]
[tex]\frac{f(x)-72}{6} =x^{2}[/tex]
[tex]x=\sqrt{\frac{f(x)-72}{6} }[/tex]
Hence, [tex]x=\sqrt{\frac{f(x)-72}{6} }[/tex].
Answer:
Values of x are:
±2i√3
Step-by-step explanation:
We have to find x in f(x)=6x²+72
i.e. those values of x for which
6x²+72=0
Subtracting 72 from both sides, we get
6x² = -72
Dividing both sides by 6, we get
x² = -12
Taking square root on both sides, we get
x = ±2i√3
Hence, Values of x are:
±2i√3