They had 23 and 38 water bottles on day 2 and day 4 respectively. Also, there will be 68 water bottles on day 7.
Explanation
Suppose, the equation representing the number of bottles is [tex]y= ax^2 +bx+c[/tex] , where [tex]x[/tex] is the number of days.
There are 17 water bottles on day 1, 30 water bottles on day 3 and 47 water bottles on day 5
So, the three points in the form of (x, y) are: (1, 17) , (3, 30) and (5, 47)
Plugging these three points into the above equation, we will get .....
[tex]17=a(1)^2 + b(1) +c\\ a+b+c=17 ............................ (1)\\ \\ 30=a(3)^2+b(3)+c\\ 9a+3b+c=30 ......................... (2) \\ \\ 47=a(5)^2+b(5)+c\\ 25a+5b+c=47 ......................... (3)[/tex]
Subtracting equation (1) from equation (2) , we will get .....
[tex]8a+2b=13 ..................... (4)[/tex]
Subtracting equation (2) from equation (3) , we will get .....
[tex]16a+2b=17 ...................... (5)[/tex]
Now, subtracting equation (4) from equation (5) , we will get ......
[tex]16a -8a = 17-13\\ \\ 8a= 4\\ \\ a=\frac{4}{8}= 0.5[/tex]
Substituting this [tex]a= 0.5[/tex] into equation (4) ........
[tex]8(0.5)+2b=13\\ \\ 4+2b=13\\ \\ 2b=9\\ \\ b=\frac{9}{2}=4.5[/tex]
Again, substituting [tex]a=0.5[/tex] and [tex]b=4.5[/tex] into equation (1) , we will get ......
[tex]0.5+4.5+c=17\\ \\ 5+c=17\\ \\ c=17-5 =12[/tex]
So, the equation will be now: [tex]y= 0.5x^2 +4.5x+12[/tex]
For finding the number of bottles on day 2 , day 4 and day 7 , we need to plug [tex]x=2 , 4, 7[/tex] respectively into the above equation.
For [tex]x= 2[/tex] , [tex]y= 0.5(2)^2 +4.5(2)+12 = 2+9+12= 23[/tex]
For [tex]x= 4[/tex] , [tex]y= 0.5(4)^2 +4.5(4)+12 = 8+18+12= 38[/tex]
For [tex]x= 7[/tex] , [tex]y= 0.5(7)^2 +4.5(7)+12 = 24.5+31.5+12= 68[/tex]
So, they had 23 water bottles on day 2 and 38 water bottles on day 4
Also, there will be 68 water bottles on day 7