Respuesta :

The solutions of the system are:  [tex]x=-6[/tex] and [tex]y=8[/tex]

Explanation

Given system of equations......

[tex]-8x-8y=-16\\ \\ 6x-9y=-108[/tex]

First we need to make the augmented matrix using the given equations....

[tex]\left[\begin{array}{cccc}-8&-8&|&-16\\6&-9&|&-108\end{array}\right][/tex]

Now, we need to transform the augmented matrix to the reduced row echelon form using the row operations.

Row operation 1 :   Multiply the 1st row by [tex]-\frac{1}{8}[/tex]. So, we will get...

[tex]\left[\begin{array}{cccc}1&1&|&2\\6&-9&|&-108\end{array}\right][/tex]

Row operation 2 :   Add -6 times the 1st row to the 2nd row. So, we will get...

[tex]\left[\begin{array}{cccc}1&1&|&2\\0&-15&|&-120\end{array}\right][/tex]

Row operation 3 :   Multiply the 2nd row by [tex]-\frac{1}{15}[/tex]. So, we will get...

[tex]\left[\begin{array}{cccc}1&1&|&2\\0&1&|&8\end{array}\right][/tex]

Row operation 4 :   Add -1 times the 2nd row to the 1st row. So, we will get....

[tex]\left[\begin{array}{cccc}1&0&|&-6\\0&1&|&8\end{array}\right][/tex]

So, this is the reduced row echelon form.

We can get the equations from the above reduced row echelon form as.....

[tex]1x+0y=-6\\ x=-6 \\ \\ and \\ \\ 0x+1y=8\\ y=8[/tex]

So, the solutions of the system are:  [tex]x=-6[/tex] and [tex]y=8[/tex]

ACCESS MORE
EDU ACCESS