Use a matrix to find the solution to the systems of equations

The solutions of the system are: [tex]x=-6[/tex] and [tex]y=8[/tex]
Explanation
Given system of equations......
[tex]-8x-8y=-16\\ \\ 6x-9y=-108[/tex]
First we need to make the augmented matrix using the given equations....
[tex]\left[\begin{array}{cccc}-8&-8&|&-16\\6&-9&|&-108\end{array}\right][/tex]
Now, we need to transform the augmented matrix to the reduced row echelon form using the row operations.
Row operation 1 : Multiply the 1st row by [tex]-\frac{1}{8}[/tex]. So, we will get...
[tex]\left[\begin{array}{cccc}1&1&|&2\\6&-9&|&-108\end{array}\right][/tex]
Row operation 2 : Add -6 times the 1st row to the 2nd row. So, we will get...
[tex]\left[\begin{array}{cccc}1&1&|&2\\0&-15&|&-120\end{array}\right][/tex]
Row operation 3 : Multiply the 2nd row by [tex]-\frac{1}{15}[/tex]. So, we will get...
[tex]\left[\begin{array}{cccc}1&1&|&2\\0&1&|&8\end{array}\right][/tex]
Row operation 4 : Add -1 times the 2nd row to the 1st row. So, we will get....
[tex]\left[\begin{array}{cccc}1&0&|&-6\\0&1&|&8\end{array}\right][/tex]
So, this is the reduced row echelon form.
We can get the equations from the above reduced row echelon form as.....
[tex]1x+0y=-6\\ x=-6 \\ \\ and \\ \\ 0x+1y=8\\ y=8[/tex]
So, the solutions of the system are: [tex]x=-6[/tex] and [tex]y=8[/tex]