To subtract fractions, the following procedure is followed:
[tex]\frac{a}{b} -\frac{c}{d} =\frac{(ad-cb)}{bd}[/tex]
For the first case:
[tex]a = -7[/tex]
[tex]b = 10[/tex]
[tex]c = 2[/tex]
[tex]d = 15[/tex]
Then the result of subtraction is:
[tex]\frac{(-7)*15 - 2*10}{10 * 15}[/tex]
[tex]= \frac{(-105-20)}{150}[/tex]
[tex]= \frac{-5}{6}[/tex]
For the second case:
[tex]a = -4[/tex]
[tex]b = 9[/tex]
[tex]c = 2[/tex]
[tex]d = 15[/tex]
Then the result of subtraction is:
[tex]\frac{(-4)*15 - 2*9}{9 * 15}[/tex]
[tex]= \frac{-60-18}{135}[/tex]
[tex]= \frac{-26}{45}[/tex]
For the third case:
Mrs. Escalante traveled [tex]\frac{2}{3}[/tex] of a mile and [tex]\frac{3}{4}[/tex] of a mile
Then Mrs. Escarlante traveled [tex]\frac{2}{3}+\frac{3}{4}[/tex] of a mile.
Adding both fractions we have the final route:
Adding [tex]\frac{(2 * 4 + 3 * 3)}{3*4} =\frac{8 + 9}{12}= \frac{17}{12}[/tex] miles = 1.42 miles