The answer is: [tex]f(19)=-3\frac{6}{7}[/tex]
Explanation
Given function is: [tex]f(x)= \frac{3}{x+2}-\sqrt{x-3}[/tex]
For finding the value of [tex]f(19)[/tex], we just need to plug [tex]x=19[/tex] into both sides of the above function and then simplify the right side. So.....
[tex]f(19)=\frac{3}{19+2}-\sqrt{19-3}\\ \\ f(19)=\frac{3}{21}-\sqrt{16}\\ \\ f(19)=\frac{1}{7}-4\\ \\ f(19)= \frac{1-28}{7}=-\frac{27}{7}=-3\frac{6}{7}[/tex]
So, the value of [tex]f(19)[/tex] will be [tex]-3\frac{6}{7}[/tex]