If point c divides point ab in the ratio 2:3 the coordinates of C are ___ . If point D divides point ac in the ratio 3:2 the coordinates of D are ____.

Respuesta :

check the picture below


for point C



\bf \textit{internal division of a line segment}
\\ \quad \\\\A(1,4)\qquad B(6,-1)\qquad
ratio1=2\qquad ratio2=3\qquad 2:3
\\\\\\
\cfrac{A{ C }}{{ C }B}=\cfrac{ratio1}{ratio2}\implies 
ratio2\cdot A=ratio1\cdot B\quad \implies 
3(1,4)=2(6,-1)
\\ \quad \\\\{{ C=\left(\cfrac{\textit{sum of "x" values}}{ratio1+ratio2}\quad ,\quad \cfrac{\textit{sum of "y" values}}{ratio1+ratio2}\right)}}\\ \quad \\


\bf thus\\\\\\C=\left(\cfrac{(3\cdot 1)+(2\cdot 6)}{2+3}\quad ,\quad \cfrac{(3\cdot 4)+(2\cdot -1)}{2+3}\right)



and for point D


\bf \textit{internal division of a line segment}
\\ \quad \\\\
A(1,4)\qquad B(6,-1)\qquad
ratio1=3\qquad ratio2=2\qquad 3:2
\\\\\\
\cfrac{A{ D }}{{ D }B}=\cfrac{ratio1}{ratio2}\implies 
ratio2\cdot A=ratio1\cdot B\quad \implies 
2(1,4)=3(6,-1)
\\ \quad \\\\
{{ D=\left(\cfrac{\textit{sum of "x" values}}{ratio1+ratio2}\quad ,\quad \cfrac{\textit{sum of "y" values}}{ratio1+ratio2}\right)}}


\bf thus
\\\\\\
D=\left(\cfrac{(2\cdot 1)+(3\cdot 6)}{3+2}\quad ,\quad \cfrac{(2\cdot 4)+(3\cdot -1)}{3+2}\right)


ACCESS MORE