Respuesta :

Answer-

At [tex]x= \frac{1}{2304e^4-16e^2}[/tex] the curve has maximum curvature.

Solution-

The formula for curvature =

[tex]K(x)=\frac{{y}''}{(1+({y}')^2)^{\frac{3}{2}}}[/tex]

Here,

[tex]y=4e^{x}[/tex]

Then,

[tex]{y}' = 4e^{x} \ and \ {y}''=4e^{x}[/tex]

Putting the values,

[tex]K(x)=\frac{{4e^{x}}}{(1+(4e^{x})^2)^{\frac{3}{2}}} = \frac{{4e^{x}}}{(1+16e^{2x})^{\frac{3}{2}}}[/tex]

Now, in order to get the max curvature value, we have to calculate the first derivative of this function and then to get where its value is max, we have to equate it to 0.

 [tex]{k}'(x) = \frac{(1+16e^{2x})^{\frac{3}{2} } (4e^{x})-(4e^{x})(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})}{(1+16e^{2x} )^{2}}[/tex]

Now, equating this to 0

[tex](1+16e^{2x})^{\frac{3}{2} } (4e^{x})-(4e^{x})(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x}) =0[/tex]

[tex]\Rightarrow (1+16e^{2x})^{\frac{3}{2}}-(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})[/tex]

[tex]\Rightarrow (1+16e^{2x})^{\frac{3}{2}}=(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})[/tex]

[tex]\Rightarrow (1+16e^{2x})^{\frac{1}{2}}=48e^{2x}[/tex]

[tex]\Rightarrow (1+16e^{2x})}=48^2e^{2x}=2304e^{2x}[/tex]

[tex]\Rightarrow 2304e^{2x}-16e^{2x}-1=0[/tex]

Solving this eq,

we get [tex]x= \frac{1}{2304e^4-16e^2}[/tex]

∴ At  [tex]x= \frac{1}{2304e^4-16e^2}[/tex] the curvature is maximum.




ACCESS MORE