Respuesta :

solution:

[tex]find the solution of the inital value problem.\\

consider the differential equation y'=\frac{x(x^2+1)}{4y^3}\\

with initial condition y(0)=-\frac{1}{2}\\

y'=\frac{x(x^2+1)}{4y^3}\\

\frac{dy}{dx}=\frac{x(x^2+1)}{4y^3}\\

4y^3dy=x(x^2+1)dx\\

taken integral\\

4y^3dy=x(x^2+1)dx\\

\int 4y^3dy=\int x(x^2+1)dx\\

\frac{4y^4}{4}=\frac{x^4}{3}+\frac{x^2}{2}+c\\

put x=0,and y(0)=-\frac{-1}{\sqrt{2}}\\

y^4=\frac{x^4}{3}+\frac{x^2}{2}+c\\[/tex][tex](\frac{-1}{\sqrt{2}})^4=0+0+c\\

c=\frac{1}{4}\\

therefore, the solution is\\

y^4=\frac{x^4}{3}+\frac{x^2}{2}+\frac{1}{4}\\

y=(\frac{x^4}{3}+\frac{x^2}{2}+\frac{1}{4})^\frac{1}{4}[/tex]

ACCESS MORE