The quadratic equation is: [tex]p=-0.5x^2+50x-600[/tex] and the two values of [tex]x[/tex] will be 40 and 60 that will create a profit of $600.
Explanation
The cost function is: [tex]c=50x+600[/tex] and
The revenue function is: [tex]r=100x-0.5x^2[/tex]
As the profit means [tex](Revenue-Cost)[/tex], so the Profit function will be....
[tex]p= r-c\\ \\ p=(100x-0.5x^2)-(50x+600)\\ \\ p=100x-0.5x^2-50x-600\\ \\ p=-0.5x^2+50x-600[/tex]
So, the quadratic equation is: [tex]p=-0.5x^2+50x-600[/tex]
Now for creating a profit of $600 means, we will plug [tex]p=600[/tex] into the above equation. So.....
[tex]600=-0.5x^2+50x-600\\ \\ 0.5x^2-50x+1200=0 \\ \\ 0.5(x^2-100x+2400)=0\\ \\ 0.5(x-40)(x-60)=0[/tex]
Now applying zero-product property.....
[tex]x-40=0\\ x=40\\ \\ and\\ \\ x-60=0\\ x=60[/tex]
So, the two values of [tex]x[/tex] will be 40 and 60 that will create a profit of $600.