Simplify the expression.

we have
[tex]\sqrt[4]{768x^{8}y^{5}}[/tex]
we know that
[tex]\sqrt[4]{768x^{8}y^{5}}=({768x^{8}y^{5})^{\frac{1}{4}}[/tex]
[tex]768=2^{8} *3[/tex]
[tex]({768x^{8}y^{5})^{\frac{1}{4}}=({2^{8}3x^{8}y^{5})^{\frac{1}{4}}[/tex]
[tex]({2^{8}3x^{8}y^{5})^{\frac{1}{4}}=2^{2} x^{2}y (3y)^{\frac{1}{4}}=4x^{2}y\sqrt[4]{3y}[/tex]
therefore
the answer is the option C
[tex]4x^{2}y\sqrt[4]{3y}[/tex]
Answer
C
Explanation
⁴√(768x⁸y⁵) = (768x⁸y⁵)¹/⁴
=768¹/⁴ × x⁸ˣ¹/⁴ × y⁵ˣ¹/⁴
⁴√768 = ⁴√(3 × 256)
= 4 ⁴√3
x⁸ˣ¹/⁴ = x²
y⁵ˣ¹/⁴ = (y⁴ × y¹)¹/⁴
= y⁴ˣ¹/⁴ × y¹/⁴
= y × y¹/⁴
∴⁴√(768x⁸y⁵) = (768x⁸y⁵)¹/⁴
= 4x²y ⁴√(3y)
The answer is C.