The solid contains a cone and a hemisphere. Find the volume of the composite solid. (Round your answer to two decimal places.)

____ in3

The solid contains a cone and a hemisphere Find the volume of the composite solid Round your answer to two decimal places in3 class=

Respuesta :

TPS00

[tex]volume = \frac{1}{3} \pi {r}^{2} h + \frac{2}{3} \pi {r}^{3} \\ \\ volume = \frac{1}{3} \pi {r}^{2} (h + 2r)[/tex]

[tex]volume = \frac{1}{3} \pi \times {7}^{2} \times (10 + 2 \times 7) \\ \\ volume = \boxed{1231.50 \: {in}^{3} }[/tex]

The volume of the given solid will be equal to 1231.50 cubic inches.

What is volume?

Volume is defined as the space covered by any solid body in the three-dimensional plane. For semicircle the parameter is radius and for cylinder, the parameters are height and radius.

Given that:-

  • The radius of the semicircle is 7 inches.
  • The height of the cylinder is 10 inches.

The volume of the solid will be calculated as:-

V   =  Volume of semicircle  +  Volume of cylinder

V   =  [tex]\dfrac{2}{3}\pi r^3+\dfrac{1}{3}\pi r^2h[/tex]

V   =  [tex]\dfrac{1}{3}\pi r^2(2r+h)[/tex]

V  =  [tex]\dfrac{1}{3}\pi (7)^2\times[ (2\times 7)+10][/tex]

V  =  1231.50 cubic inches

Therefore the volume of the given solid will be equal to 1231.50 cubic inches.

To know more about volume follow

https://brainly.com/question/24372553

#SPJ2

ACCESS MORE
EDU ACCESS