Let us draw a triangle ABC with A=15° ,B=113° and b=7.
Please see the attached image.
We know that the sum of interior angles of a triangle is 180 degrees. Thus, we have
[tex]A+B+C=180\\ \\ 15+113+C= 180\\ \\ C=62^{\circ}[/tex]
Apply Sine rule in the triangle ABC, we get
[tex]\frac{a}{\sin 15}= \frac{7}{\sin 113}\\ \\ a=\frac{7 \sin 15}{\sin 113}\\ \\ a=1.97\\ \\ \text{Again apply sine rule, we get}\\ \\ \frac{c}{\sin 62}= \frac{7}{\sin 113}\\ \\ c=\frac{7 \sin 62}{\sin 113}\\ \\ c=6.71[/tex]
Therefore, we have
[tex]a=1.97\\ c=6.71\\ C=62^{\circ}[/tex]