Write this polynomial in standard form:

8x² - 4x³ + 12 - 5x

Simplify the polynomial expression:

(4x3 + 10x2 − 3x + 15) + (−2x2 + x −2)

An expression is shown.
(2x−3)+[4x(3x+2)]
Which polynomial is equivalent to the given expression?

1. 9x−1

2. 14x+5

3. 12x2+2x−1

4. 12x2+10x−3

Respuesta :

-4x³ + 8x² - 5x + 12 Standard form

(4x³ + 10x² - 3x + 15) + (-2x² + x - 2) = 4x³ + 8x² - 2x + 13

2x - 3 + [4x (3x + 2)]

2x - 3 + (12x² + 8x)

12x² + 10x - 3

Answer:

1.[tex]-4x^3+8x^2-5x+12[/tex]

2.[tex]4x^3+8x^2-2x+13[/tex]

3.Option 4

Step-by-step explanation:

1.We are given that a polynomial

[tex]8x^2-4x^3+12-5x[/tex]

We have to write the given polynomial in standard form

In order  to  write the polynomial in standard form then we arrange the terms in polynomial according to increasing power of x

[tex]-4x^3+8x^2-5x+12[/tex]

It is required standard form of given polynomial .

2.We are given that a polynomial

[tex](4x^3+10x^2-3x+150+(-2x^2+x-2)[/tex]

We have to simplify the polynomial

[tex]4x^3+10x^2-3x+15-2x^2+x-2[/tex]

[tex]4x^3+8x^2-2x+13[/tex]

3.We are given that an expession

[tex](2x-3)+[4x(3x+2)][/tex]

We have to find the value of a polynomial which is equivalent to given expression

[tex]2x-3+12x^2+8x[/tex]

[tex]12x^2+10x-3[/tex]

Hence ,option 4 is true.

ACCESS MORE