Respuesta :

Given a quadratic equation

[tex] ax^2+bx+c=0 [/tex]

you can find its solutions with the following formula:

[tex] x_{1,2} = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} [/tex]

You equation is identified by the coefficients

[tex] x^2 - 3x + 5 \iff a = 1,\ b = -3,\ c = 5 [/tex]

Which means the solutions are

[tex] \dfrac{3 \pm \sqrt{9-4\cdot 5}}{2} = \dfrac{3 \pm \sqrt{-11}}{2} [/tex]

So, the answers are B and D

Following are the calculation to the roots:

Given:

[tex]x^2-3x+5[/tex]

To find:

roots=?

Solution:

[tex]\to x^2-3x+5[/tex]

Compare the value with the standard quadratic equation:

[tex]\to x^2-3x+5\\\\\to ax^2+bx+c\\\\-------- \\\\\to a= 1\\\\\to b= -3\\\\\to c= 5\\\\[/tex]  

Using the Shri dharacharya formula:

[tex]\to x= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

Putting the value into the above formula:  

[tex]= \frac{-(-3) \pm \sqrt{(-3)^2 - 4\times 1 \times 5 }}{2 \times 1} \\\\= \frac{3 \pm \sqrt{ 9 - 20 }}{2} \\\\= \frac{3 \pm \sqrt{ -11 }}{2} \\\\= (\frac{3 + \sqrt{ -11 }}{2} , \frac{3 - \sqrt{ -11 }}{2})\\\\\\\\[/tex]

Therefore, the answer is "Option B and Option D "

Learn more about the roots:

brainly.com/question/12912962

ACCESS MORE
EDU ACCESS