Respuesta :

Replace [tex]y'[/tex] with [tex]\dfrac{\mathrm dy}{\mathrm dx}[/tex] to see that this ODE is separable:

[tex]2y\ln x\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{y^2+4}x\implies\dfrac{2y}{y^2+4}\,\mathrm dy=\dfrac{\mathrm dx}{x\ln x}[/tex]

Integrate both sides; on the left, set [tex]u=y^2+4[/tex] so that [tex]\mathrm du=2y\,\mathrm dy[/tex]; on the right, set [tex]v=\ln x[/tex] so that [tex]\mathrm dv=\dfrac{\mathrm dx}x[/tex]. Then

[tex]\displaystyle\int\frac{2y}{y^2+4}\,\mathrm dy=\int\dfrac{\mathrm dx}{x\ln x}\iff\int\frac{\mathrm du}u=\int\dfrac{\mathrm dv}v[/tex]

[tex]\implies\ln|u|=\ln|v|+C[/tex]

[tex]\implies\ln(y^2+4)=\ln|\ln x|+C[/tex]

[tex]\implies y^2+4=e^{\ln|\ln x|+C}[/tex]

[tex]\implies y^2=C|\ln x|-4[/tex]

[tex]\implies y=\pm\sqrt{C|\ln x|-4}[/tex]

ACCESS MORE
EDU ACCESS