we are given two vectors as
[tex]a=-2i+3j+4k[/tex]
[tex]b=3i+1j-3k[/tex]
now, we can find cross product
[tex]aXb=(-2i+3j+4k)X(3i+1j-3k)[/tex]
[tex]=\begin{pmatrix}3\left(-3\right)-4\times \:1&4\times \:3-\left(-2\left(-3\right)\right)&-2\times \:1-3\times \:3\end{pmatrix}[/tex]
[tex]aXb=-13i+6j-11k[/tex]
[tex]|aXb|=\sqrt{(-13)^2+(6)^2+(-11)^2}[/tex]
[tex]|aXb|=\sqrt{326}[/tex]
now, we can find normal unit vector
[tex]n=\frac{aXb}{|aXb|}[/tex]
now, we can plug values
[tex]n=\frac{(-13i+6j-11k)}{\sqrt{326}}[/tex]
[tex]n=\frac{-13}{\sqrt{326}}i+\frac{6}{\sqrt{326}}j-\frac{11}{\sqrt{326}}k[/tex]
now, we can find components
[tex]n_x=\frac{-13}{\sqrt{326}},n_y=\frac{6}{\sqrt{326}}j,n_z=-\frac{11}{\sqrt{326}}[/tex]
...............Answer