Respuesta :
solution;
[tex]final angular velocity w_{f}=30ras/s\\
initial w_{o}=0\\
w_{f}^{2}-w_{0}^{2}=2\alpha \theta \\
(30)^2=2.\alpha .20\times2\pi \\
\alpha =\frac{(30)^2}{2\times2\pi \times20}\\
\alpha =3.58rad/s^2\\
w_{f}=w_{o}+\alpha t\\
t=\frac{wf}{\alpha }=\frac{30}{3.58}\\
t=8.38[/tex]
Explanation:
It is given that,
Displacement, [tex]\theta=2\ rev=12.56\ rad[/tex]
Initial angular velocity, [tex]\omega_i=0[/tex]
Final angular velocity, [tex]\omega_f=30\ rad/s[/tex]
Let [tex]\alpha[/tex] is its angular acceleration. Using the third equation of kinematics to find it as :
[tex]\omega_f^2-\omega_i^2=2\alpha \theta[/tex]
[tex]\omega_f^2=2\alpha \theta[/tex]
[tex]\alpha =\dfrac{\omega_f^2}{2\theta}[/tex]
[tex]\alpha =\dfrac{(30)^2}{2\times 12.56}[/tex]
Angular acceleration, [tex]\alpha =35.82\ rad/s^2[/tex]
Let t is the time required to find it as :
[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }[/tex]
[tex]t=\dfrac{30}{35.82}[/tex]
t = 0.83 seconds
So, the angular acceleration of the gear is [tex]35.82\ rad/s^2[/tex] and the time taken is 0.83 seconds.