When the gear rotates 20 revolutions, it achieves an angular velocity of v = 30 rad>s, starting from rest. Determine its constant angular acceleration and the time required?

Respuesta :

solution;

[tex]final angular velocity w_{f}=30ras/s\\

initial w_{o}=0\\

w_{f}^{2}-w_{0}^{2}=2\alpha \theta \\

(30)^2=2.\alpha .20\times2\pi \\

\alpha =\frac{(30)^2}{2\times2\pi \times20}\\

\alpha =3.58rad/s^2\\

w_{f}=w_{o}+\alpha t\\

t=\frac{wf}{\alpha }=\frac{30}{3.58}\\

t=8.38[/tex]

Explanation:

It is given that,

Displacement, [tex]\theta=2\ rev=12.56\ rad[/tex]

Initial angular velocity, [tex]\omega_i=0[/tex]

Final angular velocity, [tex]\omega_f=30\ rad/s[/tex]

Let [tex]\alpha[/tex] is its angular acceleration. Using the third equation of kinematics to find it as :

[tex]\omega_f^2-\omega_i^2=2\alpha \theta[/tex]

[tex]\omega_f^2=2\alpha \theta[/tex]

[tex]\alpha =\dfrac{\omega_f^2}{2\theta}[/tex]

[tex]\alpha =\dfrac{(30)^2}{2\times 12.56}[/tex]

Angular acceleration, [tex]\alpha =35.82\ rad/s^2[/tex]

Let t is the time required to find it as :

[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }[/tex]

[tex]t=\dfrac{30}{35.82}[/tex]

t = 0.83 seconds

So, the angular acceleration of the gear is [tex]35.82\ rad/s^2[/tex] and the time taken is 0.83 seconds.

ACCESS MORE