Density of copper can be calculated using the following formula:
[tex]d=\frac{m}{V}[/tex]
Here, m is mass and V is volume, thus, to calculate density first calculate mass and volume of copper.
In FCC, number of atoms in a unit cell are 4, atomic mass of Cu is 63.546 g/mol and number of atoms in 1 mole is [tex]6.023\times 10^{23}[/tex].
Mass of Cu will be:
[tex]m=4 atoms\times \frac{1 mol}{6.023\times 10^{23}}\times \frac{63.546 g}{mol}=4.22\times 10^{-22}g[/tex]
Now, volume can be calculate as:
[tex]V=a^{3}[/tex]
Here, a is edge length.
First convert edge length from pm to cm
[tex]1pm=10^{-10}cm[/tex]
Thus,
[tex]361.5 pm=3.615\times 10^{-8}cm[/tex]
Putting the value,
[tex]V=(3.615\times 10^{-8} cm)^{3}=4.72\times 10^{-23} cm^{3}[/tex]
Now, from mass and volume density can be calculated as follows:
[tex]d=\frac{m}{V}=\frac{4.22\times 10^{-22}g}{4.72\times 10^{-23} cm^{3}}=8.932 g/cm^{3}[/tex]
Therefore, density of copper will be [tex]8.932 g/cm^{3}[/tex].