Respuesta :
As the satellite is in free fall, therefore we use the formula
[tex]v = \sqrt{r g}[/tex]
Here, v is the orbital speed, r is radius of Earth plus satellite is in a circular orbit 500 km above the earth's surface and g is the satellite free-fall acceleration .
Given [tex]r = 6400 \ km + 500 \ km = 6900 \ km[/tex] and [tex]g = 8.25 \ m/s^2[/tex]
Substituting these values in above equation we get,
[tex]v = \sqrt{(6900 \times 10 ^3 \ m ) (8.25 \ m/s^2) } = 7.54 \times 10 ^3 \ m/s[/tex]
Thus, the speed of satellite in order to maintain the orbit is [tex]7.54 \times 10 ^3 \ m/s[/tex]
Answer:
Speed of satellite =7.59×10^3m/s
Explanation:
Formular for speed of satellite is given by:
V= Sqrt(Gm)/(RE + r))
Where G= gravitational constant =6.67×10^-11m^3kgs
m is mass of the earth =5.97×10^24kg
V= sqrt[(6.67×10^-11)(5.97×10^24)/(6900×10^3)]
V=Sqrt(3.98×10^14)/(6.9×10^6)
V= sqrt(57681159.42)
V= 7594.81m/s
V= 7.59×10^3m/s