solution:
Weight of bucket = 10kg
Length or distance =14m
Weight of rope=0.5kg/m
At any point x of the rope,
=(0.5)(14-x)
=(7-0.5x)
Since the water finishes draining at 14m level and total weight of water is 42kg
Total mass=(7-0.5x)+(42-3x)+10=(59-3.5x)kg
Force=(9.8)(59-3.5x)
[tex]work w =\lim_{n \to \infty }\sum_{i \to 1}^{n}(9.8)(59-3.5x)\Delta x\\
=\int_{0}^{14}(9.8)(59-3.5x)dx\\
=9.8\int_{0}^{14}(59-3.5x)dx\\
9.8((59x-\frac{3.5x^2}{2})){_{0}}^{14}\\
9.8(59(14)-\frac{3.5(14)^2}{2})\\
=4733.4\\
therefore,\\
W=4733.4J\approx 4733J[/tex]