We use rotational kinematic equations,
[tex]\theta =\theta _{0} + \omega_{0} t+ \frac{1}{2}\alpha t^2[/tex] (A)
[tex]\omega^2= \omega^2_{0} +2\alpha\theta[/tex] (B)
Here, [tex]\theta[/tex] and [tex]\theta _{0}[/tex] are final and initial angular displacements respectively, [tex]\omega[/tex] and [tex]\omega_{0}[/tex] are final and initial angular speed and [tex]\alpha[/tex] is the angular acceleration.
Given, [tex]\alpha = - 25.60 \ rad/s^2, \theta = 62.4 \ rad[/tex] and [tex]t = 4 .20 \ s[/tex].
Substituting these values in equation (A), we get
[tex]62.4 \ rad = 0 + \omega_{0} 4.20 \ s + \frac{1}{2} (- 25.60 \ rad/s^2) ( 4.20)^2 \\\\ \omega_{0} = \frac{220.5+ 62.4 }{4.20} =67.4 \ rad/s[/tex]
Now from equation (B),
[tex]\omega^2=(67.4 \ rad/s)^2 + 2 (- 25.60 \ rad/s^2)62.4 \ rad \\\\\ \omega = 36.7 \ rad/s[/tex]
Thus, the angular speed of the wheel at the end of the 4.20-s interval is 36.7 rad/s.