A sequence is defined recursively using the formula f(n + 1) = –0.5 f(n) . If the first term of the sequence is 120, what is f(5)? i need answer as soon as possible!

Respuesta :

7.5
f(1) = 120
f(2) = -60
f(3) = 30
f(4) = -15
f(5) = 7.5

ANSWER

[tex]f(5)=7.5[/tex]


EXPLANATION

The recursive definition is

[tex]f(n+1)=-0.5f(n)[/tex].

Since the first term of the sequence is given to us, we need to plug in [tex]n=1[/tex].


This implies that;

[tex]f(1+1)=-0.5f(1)[/tex].


[tex]f(2)=-0.5f(1)[/tex]


But we were  given that, [tex]f(1)=120[/tex].


This implies that;


[tex]f(2)=-0.5\times 120[/tex]


[tex]f(2)=-60[/tex]


Since we now know that [tex]f(2)=-60[/tex], we again plug in [tex]n=2[/tex] in to the recursive definition.


[tex]f(2+1)=-0.5f(2)[/tex]


[tex]\Righarrow f(3)=-0.5\times -60[/tex]


[tex]\Righarrow f(3)=30[/tex].


We plug [tex]n=3[/tex] in to the formula again to determine the 4th term.


[tex]f(4)=-0.5f(3)[/tex].


[tex]f(4)=-0.5 \times 30[/tex]


[tex]f(4)=-15[/tex].


We finally find the 5th term by substituting [tex]n=4[/tex].


[tex]f(4+1)=-0.5f(4)[/tex]


[tex]f(5)=-0.5\times (-15)[/tex]


[tex]f(5)=7.5[/tex]
















ACCESS MORE