Respuesta :

frika

Since [tex]\overline{MO}[/tex] bisects ∠LMN, then

∠LMO≅∠OMN and m∠LMO=m∠OMN.

Therefore, m∠OMN=x+34.

Angles LMO and OMN together form angle LMN. This means that

m∠LMN=m∠LMO+m∠OMN,

6x-28=x+34+x+34.

Solve this equation:

6x-x-x=34+34+28,

4x=96,

x=96/4=24.

Thus,  m∠OMN=x+34°=24°+34°=58°

Answer: 58°, correct choice is D.