we are given
[tex]f(x)=x^3+4[/tex]
[tex]g(x)=\sqrt[3]{x-4}[/tex]
Calculation of f(g(x)):
[tex]f(x)=x^3+4[/tex]
replace x = g(x)
[tex]f(g(x))=(g(x))^3+4[/tex]
we can plug g(x)
[tex]f(g(x))=(\sqrt[3]{x-4})^3+4[/tex]
[tex]f(g(x))=x-4+4[/tex]
[tex]f(g(x))=x[/tex]
Calculation of g(f(x)):
we are given
[tex]g(x)=\sqrt[3]{x-4}[/tex]
replace x =f(x)
[tex]g(f(x))=\sqrt[3]{f(x)-4}[/tex]
we can replace f(x)
we get
[tex]g(f(x))=\sqrt[3]{x^3+4-4}[/tex]
[tex]g(f(x))=\sqrt[3]{x^3}[/tex]
[tex]g(f(x))=x[/tex]
we can see that
[tex]f(g(x))=g(f(x))=x[/tex]
so, f(x) and g(x) are inverse of each other..........Answer