According to Clausius-Clayperon equation,
[tex]ln(\frac{P_{1} }{P_{2} }) = \frac{delta H_{vap} }{R} (\frac{1}{T_{2} }-\frac{1}{T_{1} } )[/tex]
[tex]P_{1}[/tex]is the vapor pressure at boiling point = 760 torr
[tex]P_{2}[/tex] is the vapor pressure at T_{2} =638.43 torr
Temperature[tex]T_{2} = 110.0^{0}C + 273 = 383 K[/tex]
Δ[tex]H_{vap} = 38210 J/mol[/tex]
Plugging in the values, we get
[tex]ln(\frac{P_{1} }{P_{2} }) = \frac{delta H_{vap} }{R} (\frac{1}{T_{2} }-\frac{1}{T_{1} } )[/tex]
ln[tex]\frac{760 torr}{638.43 torr} =\frac{38210 J/mol}{8.314 J/(mol.K)} (\frac{1}{383 K}-\frac{1}{T_{1} }[/tex]
[tex]T_{1} = 389 K[/tex]
Therefore, the boiling point of octane = 389 K - 273 = [tex]116^{0}C[/tex]