Respuesta :

we are given

[tex]r(t)=(4e^{3t} , 2e^{-3t} , 4te^{3t})[/tex]

Calculation of r(0):

we can plug t=0

[tex]r(0)=(4e^{3*0} , 2e^{-3*0} , 4*0e^{3*0})[/tex]

[tex]r(0)=(4 , 2 , 0)[/tex]

Calculation of r'(0):

Firstly, we will find derivative

[tex]r'(t)=(4*3e^{3t} , 2*-3e^{-3t} , 4e^{3t}+4t*3e^{3t})[/tex]

we can simplify it

[tex]r'(t)=(12e^{3t} , -6e^{-3t} , 4e^{3t}+12te^{3t})[/tex]

now, we can plug t=0

[tex]r'(0)=(12e^{3*0} , -6e^{-3*0} , 4e^{3*0}+12*0e^{3*0})[/tex]

[tex]r'(0)=(12 , -6e^{-3*0} , 4e^{3*0}+12*0e^{3*0})[/tex]

[tex]r'(0)=(12 , -6 , 4)[/tex]

Calculation of r''(0):

we can find second derivative

[tex]r''(t)=(12*3e^{3t} , -6*-3e^{-3t} , 4*3e^{3t}+12e^{3t}+12t*3*e^{3t})[/tex]

[tex]r''(t)=(36e^{3t} , 18e^{-3t} , 12e^{3t}+12e^{3t}+36te^{3t})[/tex]

now, we can plug t=0

we get

[tex]r''(0)=(36e^{3*0} , 18e^{-3*0} , 12e^{3*0}+12e^{3*0}+36*0*e^{3*0})[/tex]

[tex]r''(0)=(36 , 18 , 24)[/tex]

Calculation of r'(0) · r''(0):

[tex]r'(0)*r''(0)=(12 , -6 , 4)*(36 , 18 , 24)[/tex]

[tex]r'(0)*r''(0)=12*36-6*18+4*24[/tex]

[tex]r'(0)*r''(0)=420[/tex]............Answer