Find a formula for the described function. an open rectangular box with volume 9 m3 has a square base. express the surface area sa of the box as a function of the length of a side of the base, x. sa = x2+ 36 x​ m2 state the domain of sa.

Respuesta :

Let

x--------> the length side of the square base

h--------> the height of the box

we know that

the volume of the box is equal to

[tex]V=x^{2} *h\\ V=9\ m^{3}[/tex]

so

[tex]x^{2} *h=9\\\\h=\frac{9}{x^{2} }[/tex]

the surface area of the box is equal to

[tex]SA=area\ of\ the\ base+perimeter\ of\ base*height[/tex] (remember that the box is open)

area of the base=[tex](x^{2})\ m^{2}[/tex]

Perimeter of the base=[tex](4*x)\ m[/tex]

height=(h) m

[tex]h=\frac{9}{x^{2}}[/tex]

substitute

[tex]SA=x^{2} +4*x*h\\ \\ \\ SA=x^{2} +4*x*\frac{9}{x^{2} } \\ \\ SA=x^{2} +\frac{36}{x}[/tex]

we know that

the value of x can not be negative and the denominator can not be zero

therefore

the answer is

the domain of  SA is x> 0

the domain is the interval-------------> (0,∞)