Assume the radius of a neutron to be approximately 1.0×10−13 cm, and calculate the density of a neutron. [hint: for a sphere v=(4/3)πr3.]

Respuesta :

The density of the neutron,

[tex]\rho = \frac{m}{V}[/tex]

Here, m is the mass and V is the volume.

Now to calculate the volume of a neutron, we use the formula

[tex]V=\frac{4}{3} \times \pi\times r^3[/tex]

Here r is the radius of the neutron and its value of [tex]1.0\times10^{-13} cm[/tex]

So,

[tex]V=\frac{4}{3} \times 3.14\times (1.0\times 10^{-13})^3 \\ V =4.186\times 10^{-39} cm^{3}[/tex]

We know the mass of neutron, [tex]m= 1.674929 \times 10^{-27} kg = 1.674929 \times10^{-24} g[/tex]

Thus,  

[tex]\rho =\frac{1.674929 \times10^{-24} \ g}{4.186\times 10^{-39} cm^{3}} \\\\\ \rho=4.00\times10^{14} \ g/cm^3[/tex]