Respuesta :
As the each sphere have the same charge, we use the Coulomb law to calculate the charge on the sphere
[tex]F=k\frac{qq}{r^2} \\\\q=\sqrt{\frac{F r^2}{k} }[/tex]
Here, [tex]F=3.33\times 10^{-21} N[/tex] and [tex]r=20 cm=20\times10^{-2} m[/tex] and k is constant and its value is [tex]8.99\times 10^{9} N.m^2/C^2[/tex]
Therefore,
[tex]q=\sqrt{\frac{3.33\times10^{-21}\times(20\times10^{-2} m)^2 }{8.99\times 10^{9} N.m^2/C^2 } }\\\\q=1.2\times 10^{-16} C[/tex]
Thus, the number of electron present in each sphere is
[tex]N=\frac{q}{e} \\\\ N =\frac{1.2\times 10^{-16} C}{1.6\times10^{-19}C } \\\\ N=0.75\times 10^3=750[/tex]
Solution:
Since we have two small spheres:
One Charge = q1 = q
Force = F = 4.57*10^-21 N
Other charge = q2 =q
Distance = r = 20 cm = 0.2 m
permittivity of free space = eo =8.854×10−12 C^2/ (N.m^2)
Using Coulomb's law,
F=[1/4pieo]q1q2/r^2
F = [1/4pieo]q^2 / r^2
q^2 =F [4pieo]r^2
q = r*sq rt F[4pieo]
q=0.2* sq rt[3.33 x 10^-21]*[4*3.1416*8.854*10^-12]
q = 1.28923*10^ -16 C
So,
number of excess electrons = n = q/e=1.28923*10^ -16 /1.6*10^-19
n =750
Thus,
750 excess electrons must be present on each sphere.