Respuesta :
Let [tex] A=(8,7) [/tex], [tex] B=(x_B,y_B) [/tex] and the midpoint [tex] M=(2,1) [/tex]. We have:
[tex] M=\left(\dfrac{x_A+x_B}{2},\dfrac{y_A+y_B}{2}\right)\\\\\\(2,1)=\left(\dfrac{8+x_B}{2},\dfrac{7+y_B}{2}\right)\\\\\\\begin{cases}\dfrac{8+x_B}{2}=2\qquad|\cdot2\\\\\dfrac{7+y_B}{2}=1\qquad|\cdot2\end{cases}\\\\\\ \begin{cases}8+x_B=4\\7+y_B=2\end{cases}\\\\\\\begin{cases}x_B=4-8\\y_B=2-7\end{cases}\\\\\\\boxed{\begin{cases}x_B=-4\\y_B=-5\end{cases}} [/tex]
Answer C.
Option C
Coordinates of other endpoint is (-4,-5)
Given :
Midpoint is (2,1)
End point is (8,7)
find the other endpoint
Explanation :
We apply midpoint formula
[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} ) \\Let \; (x_1,y_1) \; is \; the \; other \; endpint\\one \; endpoint \; (8,7)\\(\frac{x_1+8}{2},\frac{y_1+ 7}{2})=(2,1) \\[/tex]
Set the x values and solve for x1
[tex]\frac{x_1+8}{2}=2 \\\\x_1+8=4\\Subtract \; 8\\x_1=-4\\\\\\ \frac{y_1+ 7}{2}=1 \\\\y_1+7=2\\y_1=-5[/tex]
So, other endpoint is (-4,-5)
Learn more :
brainly.com/question/17490159