1.
[tex]f(x) = x(x-4) = x^2 - 4x[/tex]
[tex]f'(x) = 2x - 4[/tex]
[tex]f'(0) = 2(0) - 4 = -4[/tex]
Slope of perpendicular to tangent, -1/(-4) = 1/4.
We want the line tangent to f(x) with this slope:
[tex]1/4 = f'(x) = 2x - 4[/tex]
[tex]17/4 = 2x[/tex]
[tex]x = 17/8[/tex]
[tex]y = x(x-4) = \frac{17}{8} \cdot (-\frac{15}{8}) = -\dfrac{255}{64}[/tex]
Answer: B(17/8, -255/64)
Looks like you got it right.
2.
The cylinder volume is [tex]2\pi r h[/tex], here
[tex]81 \pi= \pi x^2 h[/tex]
[tex]h = \dfrac{81}{x^2}[/tex]
(a) Total surface area is circular base plus cylinder side plus the lateral cone surface The lateral cone surface area, surface length l, radius r is [tex]\pi r l[/tex].
[tex]A = \pi x^2 + 2\pi x\cdot\dfrac{81}{x^2} + \pi x(2x)[/tex]
[tex]A = 3 \pi x^2 + \dfrac{162 \pi}{x} = 3 \pi(x^2+ 54/x)[/tex]
(b)
[tex]A' =0 = 3\pi(2x-54/x^2)[/tex]
[tex]54 = 2x^3[/tex]
[tex]x^3 = 27 [/tex]
[tex]x=3[/tex]
[tex]A = 3 \pi(x^2+ 54/x) = 3 \pi(9 + 18) = 81 \pi[/tex]
Answer: 81π