Solution: We are given:
[tex]\mu=15, \sigma=5[/tex]
Using the empirical rule, we have:
[tex]\mu \pm \sigma[/tex] covers 68% of data.
Also the percentage of values below mean = Percentage of values above mean = 50%
Now, let's find the z score for x=20
[tex]z=\frac{20-15}{5}=1[/tex]
Therefore, the percentage of values greater than 1 standard deviation above mean [tex]50\% - \frac{68\%}{2} =50\%-34\%=16%[/tex]
Expected number of students = 16% of 100 = 16