Respuesta :
[tex]h = 5b - 2[/tex]
[tex]\frac 1 2 b h= 36[/tex]
[tex]b(5b - 2) = 72[/tex]
[tex]5b^2 - 2b - 72 = 0[/tex]
[tex](b - 4)(5b + 18) = 0[/tex]
[tex]b = 4 \textrm{ or }b = -18/5[/tex]
We can rule out the negative length.
[tex]h = 72/b = 72/4 = 18[/tex]
Answer: b=4, h=18
base: b
height: 5b - 2
Area = 1/2 (b) (h)
36 = 1/2(b) (5b - 2)
72 = b(5b - 2) multiplied both sides by 2 to clear the denominator
72 = 5b² - 2b
0 = 5b² - 2b - 72
Use quadratic formula to find that b = 4 or -3.6 (disregard the negative) so
b = 4
height: 5b - 2 = 5(4) - 2 = 20 - 2 = 18
Answer: base=4 in, height=18 in