Respuesta :

DeanR

[tex]h = 5b - 2[/tex]

[tex]\frac 1 2 b h= 36[/tex]

[tex]b(5b - 2) = 72[/tex]

[tex]5b^2 - 2b - 72 = 0[/tex]

[tex](b - 4)(5b + 18) = 0[/tex]

[tex]b = 4 \textrm{ or }b = -18/5[/tex]

We can rule out the negative length.

[tex]h = 72/b = 72/4 = 18[/tex]

Answer: b=4, h=18


base: b

height: 5b - 2

Area = 1/2 (b) (h)

36 = 1/2(b) (5b - 2)

72 = b(5b - 2)          multiplied both sides by 2 to clear the denominator

72 = 5b² - 2b

0 = 5b² - 2b - 72

Use quadratic formula to find that b = 4 or -3.6 (disregard the negative) so

b = 4

height: 5b - 2  = 5(4) - 2  = 20 - 2  = 18

Answer: base=4 in, height=18 in