Determining the Axis of Symmetry of Quadratic Functions Which functions have an axis of symmetry of x = –2? Check all that apply. f(x) = x2 + 4x + 3 f(x) = x2 – 4x – 5 f(x) = x2 + 6x + 2 f(x) = –2x2 – 8x + 1 f(x) = –2x2 + 8x – 2

Respuesta :

answers:

             f(x) = x² + 4x + 3, f(x) = –2x² – 8x + 1,

Answer:

[tex]f(x) = x^2 + 4x + 3[/tex]

[tex]f(x) = -2x^2 - 8x + 1[/tex]

Step-by-step explanation:

[tex]f(x) = x^2 + 4x + 3[/tex]

To find axis of symmetry we apply formula

[tex]x= \frac{-b}{2a}[/tex]

a= 1, b= 4

[tex]x= \frac{-4}{2(1)}=-2[/tex]

Axis of symmetry at x=-2

[tex]f(x) = x^2 - 4x - 5[/tex]

a= 1, b= -4

[tex]x= \frac{4}{2(1)}=2[/tex]

Axis of symmetry at x=2

[tex]f(x) = x^2 + 6x + 2[/tex]

a= 1, b= 6

[tex]x= \frac{-6}{2(1)}=-3[/tex]

Axis of symmetry at x=-3

[tex]f(x) = -2x^2 - 8x + 1[/tex]

a= -2, b= -8

[tex]x= \frac{8}{2(-2)}=-2[/tex]

Axis of symmetry at x=-2

[tex]f(x) = -2x^2 + 8x - 2[/tex]

a= -2, b= 8

[tex]x= \frac{-8}{2(-2)}=2[/tex]