Respuesta :
Firstly, foil 3/4t(f - 2p): [tex] m=\frac{3}{4}ft-\frac{3}{2}p [/tex]
Next, subtract both sides by 3/4ft: [tex] m-\frac{3}{4}ft=-\frac{3}{2}p [/tex]
Lastly, multiply both sides by -2/3 and your answer will be: [tex] -\frac{2}{3}m+\frac{1}{2}ft=p [/tex]
Answer:
[tex]p=-\frac{2}{3}m+\frac{1}{2}ft[/tex]
Step-by-step explanation:
We have been given an equation [tex]m=\frac{3}{4}t\times (f-2p)[/tex]. We are asked to solve for p.
[tex]m=\frac{3}{4}t\times (f-2p)[/tex]
Use distributive property:
[tex]m=\frac{3}{4}ft-\frac{6p}{4}[/tex]
[tex]m=\frac{3}{4}ft-\frac{3p}{2}[/tex]
Subtract [tex]\frac{3}{4}ft[/tex] from both sides:
[tex]m-\frac{3}{4}ft=\frac{3}{4}ft-\frac{3}{4}ft-\frac{3p}{2}[/tex]
[tex]m-\frac{3}{4}ft=-\frac{3p}{2}[/tex]
Multiply both sides by [tex]\frac{-2}{3}[/tex]:
[tex](m-\frac{3}{4}ft)\times\frac{-2}{3}=\frac{-2}{3}\times \frac{-3p}{2}[/tex]
[tex]-\frac{2}{3}m+\frac{1}{2}ft=p[/tex]
Therefore, our required equation would be [tex]p=-\frac{2}{3}m+\frac{1}{2}ft[/tex].