Respuesta :
[tex] \sin^3 \theta-\cos^3 \theta=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\ (\sin \theta-\cos \theta)(\sin^2 \theta+\sin \theta\cos \theta +\cos^2 \theta)=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\ (\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\ [/tex]
Solution :
- Refer the attachment
Additional Information :
- ⇒ sin² θ + cos² θ = 1
- ⇒ sin² θ = 1 - cos²θ
- ⇒ sec²θ = 1 + tan²θ
- ⇒ cot²θ = cosec²θ - 1
★ Reciprocal identities :-
[tex] \boxed{sin θ = \dfrac{1}{cosecθ}}[/tex]
[tex]\boxed{cosec θ = \dfrac{1}{ sin θ}}[/tex]
[tex]\boxed{cos θ = \dfrac{1}{ sec θ}}[/tex]
[tex]\boxed{sec θ = \dfrac{1}{cos θ}}[/tex]
[tex]\boxed{tan θ = \dfrac{1}{ cot θ}}[/tex]
[tex]\boxed{cot θ = \dfrac{1}{tan θ}}[/tex]