Respuesta :
[tex] \dfrac{2\cos \theta \sin \theta}{\tan(90-\theta)}=2\sin^2 \theta\\\\ \dfrac{2\cos \theta \sin \theta}{\cot \theta}=2\sin^2 \theta\\\\ \dfrac{2\cos \theta \sin \theta}{\dfrac{\cos \theta}{\sin \theta}}=2\sin^2 \theta\\\\ 2\cos \theta \sin \theta\cdot\dfrac{\sin \theta}{\cos \theta}=2\sin^2 \theta\\\\ 2\sin^2 \theta=2\sin^2 \theta [/tex]
Consider a right angled triangle with hypotenuse c and legs a and b. Let sin theta = a/c .
Then cos theta = b/c and tan (90-theta) = b/a
Then 2 sin theta cos theta / tan (90 - theta)
= 2 * a/c * b/c / b/a
= 2 * ab/c^2 * a/b
= 2 a^2 / c^2 = 2 sin^2 theta