Respuesta :

Here are a few rules about exponents you should know:

  1. Multiplying exponents of the same base: [tex] x^m*x^n=x^{m+n} [/tex]
  2. Dividing exponents of the same base: [tex] \frac{x^m}{x^n}=x^{m-n} [/tex]
  3. Powering a power to a power: [tex] (x^m)^n=x^{m*n} [/tex]
  4. Converting a negative exponent into a positive one: [tex] x^{-m}=\frac{1}{x^m};\frac{1}{x^{-m}}=x^m [/tex]

Firstly, multiply the y bases: [tex] \frac{z^5}{(-y^{-4}y^{-1}x^3)^{-3}}=\frac{z^5}{(-y^{-4+-1}x^3)^{-3}}=\frac{z^5}{(-y^{-5}x^3)^{-3}} [/tex]

Next, solve the power: [tex] \frac{z^5}{(-y^{-5}x^3)^{-3}}=\frac{z^5}{-y^{-5*-3}x^{3*-3}}=\frac{z^5}{-y^{15}x^{-9}} [/tex]

Finally, convert the negative exponent into a positive one and your final answer will be: [tex] -\frac{z^5x^9}{y^{15}} [/tex]