Respuesta :
Answer:
1) [tex]22\div (9+2)=2[/tex]
2) [tex]8+3\cdot 42=134[/tex]
3) Option A - [tex](12+6)\div(3+3)[/tex]
4) Option D - [tex](75-5)\times 1+4[/tex]
Step-by-step explanation:
1) Simplify [tex]22\div (9+2)[/tex]
Solution :
Add the terms in bracket,
[tex]22\div (9+2)=22\div 11[/tex]
Divide,
[tex]22\div (9+2)=2[/tex]
2) Evaluate [tex]8+3\cdot 42[/tex]
Solution :
Solve the dot product,
[tex]8+3\cdot 42=8+126[/tex]
Add the terms,
[tex]8+3\cdot 42=134[/tex]
3) Which expression has a value of 3?
Solution : Solve each expression,
A. [tex](12+6)\div(3+3)[/tex]
[tex](12+6)\div(3+3)=18\div 6=3[/tex]
B. [tex](12+6)\div3+3[/tex]
[tex](12+6)\div3+3=18\div 3+3=6+3=9[/tex]
C. [tex]12+6\div(3+3)[/tex]
[tex]12+6\div(3+3)=12+6\div 6=12+1=13[/tex]
D. [tex]12+(6\div3+3)[/tex]
[tex]12+(6\div3+3)=12+(2+3)=12+5=17[/tex]
Option A is correct.
4) Which expression has a value of 74?
Solution : Solve each expression,
A. [tex](75-5)\times(1+4)[/tex]
[tex](75-5)\times(1+4)=70\times 5=350[/tex]
B. [tex]75-5\times(1+4)[/tex]
[tex]75-5\times(1+4)=75-5\times 5=75-25=50[/tex]
C. [tex]75-(5\times1+4)[/tex]
[tex]75-(5\times1+4)=75-(5+4)=75-9=66[/tex]
D. [tex](75-5)\times 1+4[/tex]
[tex](75-5)\times 1+4=70\times 1+4=70+4=74[/tex]
Option D is correct.
