[tex] \text{reaction rate} = 9.6 \times 10^{-5} \; \text{mol}\cdot\text{L}^{-1} \cdot \text{s}^{-1} [/tex]
Explanation:
Concentration [tex] c = n / V [/tex];
The reaction see a [tex] 0.0023 \; \text{atm} [/tex] change in pressure per second. By the ideal gas law, this quantity would correspond to a change in concentration, [tex] n/V [/tex] of
[tex]c = n / V = P / (n \cdot R) = 0.0023 / ((273.15 + 20) \times 0.0821 ) = 9.6 \times 10^{-5} \; \text{mol} [/tex]
where the ideal gas constant [tex] R = 0.0821 \; \text{L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} [/tex].
By definition, [tex] \text{reaction rate} = \Delta \text{concentration} / \Delta\text{time} [/tex]
Therefore, for this particular reaction
[tex] \text{rate} = 9.6 \times 10^{-5} \; \text{mol} / (1 \; \text{s} ) = 9.6 \times 10^{-5} \; \text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1} [/tex]