Respuesta :

The volume of the box is given by:

 [tex]V1 = w * l * h[/tex]

Where,

w: width of the box

h: height of the box

l: length of the box

Substituting values:

[tex]V1 = 1 * 1 * 1[/tex]

[tex]V1 = 1 ft ^ 3[/tex]

The volume of the box in inches is:

 [tex]V1 = 1 * (12 ^ 3)[/tex]

[tex]V1 = 1728 in ^ 3[/tex]

Then, the volume of each penny is:

 [tex]V2 = \pi * r ^ 2 * h[/tex]

Where,

r: coin radius

h: coin height

Substituting values:

 [tex]V2 = 3.14 * (0.375) ^ 2 * (0.06)[/tex]

[tex]V2 = 0.026 in ^ 3[/tex]

Then, the number of coins that fit in the box is:

 [tex]N = \frac{V1}{V2}[/tex]

[tex]N =\frac{1728}{0.026}[/tex]

[tex]N = 66461[/tex]

Answer:

the number of pennies that would fit in the box is:

[tex]N = 66461[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico