The volume of the box is given by:
[tex]V1 = w * l * h[/tex]
Where,
w: width of the box
h: height of the box
l: length of the box
Substituting values:
[tex]V1 = 1 * 1 * 1[/tex]
[tex]V1 = 1 ft ^ 3[/tex]
The volume of the box in inches is:
[tex]V1 = 1 * (12 ^ 3)[/tex]
[tex]V1 = 1728 in ^ 3[/tex]
Then, the volume of each penny is:
[tex]V2 = \pi * r ^ 2 * h[/tex]
Where,
r: coin radius
h: coin height
Substituting values:
[tex]V2 = 3.14 * (0.375) ^ 2 * (0.06)[/tex]
[tex]V2 = 0.026 in ^ 3[/tex]
Then, the number of coins that fit in the box is:
[tex]N = \frac{V1}{V2}[/tex]
[tex]N =\frac{1728}{0.026}[/tex]
[tex]N = 66461[/tex]
Answer:
the number of pennies that would fit in the box is:
[tex]N = 66461[/tex]