Call x the distance on the ground to the base of the building for the first measurement of 38°. Call the height of the building is y.
The height is the opposite of the angle, for each angle, so related to the adjacent side through the tangent.
[tex]y = x \tan 38^\circ [/tex]
[tex]y = (x- 100) \tan 47^\circ[/tex]
[tex]x \tan 38^\circ = x \tan 47^\circ - 100 \tan 47^\circ[/tex]
[tex]100 \tan 47^\circ = x(\tan 47^\circ - \tan 38^\circ)[/tex]
[tex]x = \dfrac{100 \tan 47^\circ}{\tan 47^\circ - \tan 38^\circ}[/tex]
[tex]y = x \tan 38^\circ = \dfrac{100 \tan 47^\circ \tan 38^\circ}{\tan 47^\circ - \tan 38^\circ}[/tex]
[tex]y \approx 287.83[/tex]
Answer: 287.8 feet