What is the concentration in (a) ppmv, and (b) percent by volume, of carbon monoxide (co) that has a concentration of 35 mg/m3? the problem conditions are temperature = 25oc and pressure = 1.0 atm?

Respuesta :

Molar mass of carbon monoxide ([tex]CO[/tex]) = [tex]12+16 = 28 g/mol[/tex]

Concentration of carbon monoxide ([tex]CO[/tex]) = [tex]35 mg/m^{3}[/tex] (given)

Since, [tex]1 mg = 10^{-3} g[/tex]

So, the concentration of carbon monoxide ([tex]CO[/tex]) = [tex]35\times 10^{-3} g/m^{3}[/tex]

a. ppmv stands for parts per million by volume is defined as the volume of a substance dissolved in one million parts per volume of the liquid.

The formula used for determining the volume is:

[tex]PV = nRT[/tex]

[tex]V= \frac{nRT}{P}[/tex]  -(1)

where,

[tex]V[/tex] is volume, [tex]n[/tex] is number of moles, [tex]R[/tex] is universal gas constant, [tex]T[/tex] is temperature and [tex]P[/tex] is pressure.

For determining number of moles, [tex]n[/tex]:

[tex]n = \frac{given weight}{Molar mass}[/tex]

[tex]n = \frac{35\times 10^{-3} g}{28 g/mol} = 1.25\times 10^{-3} mole[/tex]

Temperature, [tex]T = 25^{o}C = 25+273.15K = 298.15 K[/tex]

Pressure, [tex]P[/tex] = [tex]1 atm =101325 Pa[/tex]

Substituting the values in formula (1):

[tex]V= \frac{1.25\times 10^{-3} mole\times 8.314 Pa m^{3}/K mol\times 298.15 K}{101325Pa}[/tex]

[tex]V = 3.06\times 10^{-5} m^{^{3}}[/tex]

Now converting [tex]m^{^{3}}[/tex] to ppmv as:

[tex]V = 3.06\times 10^{-5} \frac{m^{^{3}} CO}{m^{^{3}} air}\times 10^{6}[/tex]

[tex]V = 30.6 ppm_v[/tex]

b. Percent by volume is calculated as:

[tex]Volume percent = \frac{Volume of CO}{Volume of CO+Volume of air}\times 100[/tex]

[tex]Volume percent = \frac{3.06\times 10^{-5} m^{3}}{3.06\times 10^{-5} m^{3}+ 1 m^{3}}\times 100[/tex]

[tex]Volume percent = 3.06\times 10^{-3}[/tex]%.






ACCESS MORE
EDU ACCESS
Universidad de Mexico